首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
航空   35篇
航天技术   23篇
航天   6篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   8篇
  2007年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有64条查询结果,搜索用时 25 毫秒
21.
The UN Office for Outer Space Affairs, through the IHY Secretariat and the United Nations Basic Space Science Initiative (UNBSSI), assists scientists and engineers world-wide to participate in the International Heliophysical Year (IHY) 2007. A major thrust of IHY/UNBSSI is to deploy arrays of small, inexpensive instruments such as magnetometers, radio telescopes, GPS receivers, all-sky cameras, etc. around the world to allow global measurements of ionospheric and heliospheric phenomena. The small instrument program is envisioned as a partnership between instrument providers and instrument hosts in developing nations, with the former providing the instruments, the host nation the manpower, facilities and operational support, typically at a local university. Funds are not available through IHY/UNBSSI to build the instruments; these must be obtained through the normal proposal channels. All instrument operational support for local scientists, facilities, data acquisition, etc. will be provided by the host nation. The IHY/UNBSSI can facilitate the deployment of several of these networks and existing databases and relevant software tools will be identified to promote space science activities in developing nations. Extensive data on space science have been accumulated by a number of space missions. Similarly, long-term databases are available from ground-based observations. These data can be utilized in ways different from those originally intended for understanding the heliophysical processes. This report provides an overview of IHY/UNBSSI, its achievements, future plans and outreach to the 192 member states of the United Nations.  相似文献   
22.
Education and public outreach (EPO) is one of the four components of the International Heliophysical Year (IHY). It is fundamental in achieving one of IHY’s primary objectives which is to “demonstrate the beauty, relevance and significance of Space and Earth science to the world.”  相似文献   
23.
The Ballooncraft Support Systems were developed by NASA Wallops Flight Facility for use on ULDB class balloon missions. The support systems have now flown two missions supporting the Cosmic Rays Energetics and Mass (CREAM) experiment. The first, CREAM I, flown in December 2004, was for a record breaking 41 days, 21 h, and the second flight flown in December 2005, was for 28 days, 9 h. These support systems provide CREAM with power, telecommunications, command, and data handling including flight computers, mechanical structures, thermal management, and attitude control to help ensure a successful scientific mission. This paper addresses the performance and success of these support systems over the two missions.  相似文献   
24.
THE DIGITAL WAVE-PROCESSING EXPERIMENT ON CLUSTER   总被引:1,自引:0,他引:1  
The wide variety of geophysical plasmas that will be investigated by the Cluster mission contain waves with a frequency range from DC to over 100 kHz with both magnetic and electric components. The characteristic duration of these waves extends from a few milliseconds to minutes and a dynamic range of over 90 dB is desired. All of these factors make it essential that the on-board control system for the Wave-Experiment Consortium (WEC) instruments be flexible so as to make effective use of the limited spacecraft resources of power and telemetry-information bandwidth. The Digital Wave Processing Experiment, (DWP), will be flown on Cluster satellites as a component of the WEC. DWP will coordinate WEC measurements as well as perform particle correlations in order to permit the direct study of wave/particle interactions. The DWP instrument employs a novel architecture based on the use of transputers with parallel processing and re-allocatable tasks to provide a high-reliability system. Members of the DWP team are also providing sophisticated electrical ground support equipment, for use during development and testing by the WEC. This is described further in Pedersen et al. (this issue).  相似文献   
25.
CH4, CO, and CO2 are all potential one-carbon molecular repositories in primitive icy objects. These molecules are all found in the Comet Halley coma, and are probable but, (except for CH4 detected on Triton and Pluto) undetected subsurface constituents in icy outer solar system objects. We have investigated the effects of charged particle irradiation by cold plasma discharge upon surfaces of H2O:CH4 clathrate having a 200:1 ratio, as well as upon ices composed of H2O plus C2H6 or C2H2 (sometimes plus NH3) which are also plausible constituents. These materials color and darken noticeably after a dose 10(9) - 10(10) erg cm-2, which is deposited rapidly (< or = 10(4) yr.) in solar system environments. The chromophore is a yellowish to tan organic material (a tholin) which we have studied by UV-VIS reflection and transmission, and IR transmission spectroscopy. Its yield, -1 C keV-1, implies substantial production of organic solids by the action of cosmic rays and radionuclides in cometary crusts and interiors, as well as rapid production in satellite surfaces. This material shows alkane bands which Chyba and Sagan have shown to well match the Halley infrared emission spectrum near 3.4 microns, and also bands due to aldehyde, alcohol and perhaps alkene/aromatic functional groups. We compare the IR spectral properties of these tholins with the spectra of others produced by irradiation of gases and ices containing simple hydrocarbons.  相似文献   
26.
27.
We present first results from the Coronal Diagnostic Spectrometer (CDS) aboard the ESA/NASA Solar and Heliospheric Observatory (SOHO). CDS is a double spectrometer operating in the 151–785 Å range. This region of the solar spectrum is rich in emission lines from trace elements in the solar atmosphere, which can be used to derive diagnostic information on coronal and transition region plasmas. Early spectra are presented and well identified lines are listed. In addition, examples of images in selected wavelength ranges are shown, for a prominence, a loop system and a bright point, demonstrating well the power of such extreme ultraviolet observations.  相似文献   
28.
The year 2008 marked the one hundredth anniversary of the observational discovery by George Ellery Hale of magnetic field in sunspots (Hale in Astrophys. J. 28:315–343, 1908). This observation, the first to suggest a direct link between the best-known variable features on the Sun and magnetism, started a line of research that has widened considerably over the last 100 years and is continuing today. Knowledge about all aspects of the Sun has increased in a remarkable way over the past few decades. Variations in the appearance of the Sun and its corona, as well as deeper sources of quasi-regular and chaotic changes that make up solar variability have been extensively documented by both ground-based and space-based solar observatories. It has been recognized that solar magnetism is the key phenomenon that drives solar variability. The workshop devoted to the origin and dynamics of solar magnetism held in the International Space Science Institute in Bern, Switzerland, from 21 to 25 January 2008 reviewed the status of the field and has led to this volume that brings together the best available knowledge and understanding of solar magnetism 100 years after Hale’s pioneering paper. This introductory paper gives an outline of the history of research into solar variability up to the work of Hale and his colleagues. The achievements of the past decades are discussed extensively in the other contributions to this volume.  相似文献   
29.
30.
The author examines a proposal published by D.T. Glass-Hooper (see Flight, Dec. 21, 1916) for controlling an aircraft using solenoids. He than discusses the control systems used almost universally in aircraft through the end of WWII, and the gradual evolution to almost all-electrical flight control (the hydraulic actuator is the last major nonelectrical element). Laboratory testing of electric actuators is considered and the C-141 Aileron electric actuation system is presented. The High Technology Test Bed program, which was implemented to provide a research aircraft for the development and evaluation of aerodynamic, avionic, and flight control system concepts, is described  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号